Heat decarbonisation

1 - costs and impacts2 - social equity and fuel poverty issues

STIRLING
30TH OCTOBER
2017

HEAT DECARBONISATION

COSTS AND IMPACTS

Residential heat and power demand

Heat and Power Demand over 1 Day in a Typical UK Dwelling

Heat – the challenge

- ► Twice as much energy as electricity
- Six times peak in winter (100 HPCs)
- Seasonal challenge for resilience/storage
- Lowest renewable heat in EU
- Worst housing
- People are happy
- Least understood/resourced

Mix of carbon reduction solutions

- Lower consumption through
 - building efficiency improvements
 - operational efficiency through e,g, district heating
- Decarbonisation of heat generation
 - repurpose gas grids with hydrogen
 - electrification (as grid carbon intensity reduces)
 - others? (bio-sources, solar thermal, geo-thermal)
- All major infrastructure investments

Analysis objectives

- Retrofit (UK-wide = 20,000 properties/week over 20-25 years)
- Assess cost, impact and practicality of
 - Hydrogen in repurposed gas grid
 - Electricity
 - District heating
- For different housing types
 - Urban
 - Suburban
 - Rural
 - ► Flats

Impact and cost assessment

Urban and suburban properties	Repurposed gas grids (hydrogen)	Electrification (heat pump)	District heating
Cost/impact of decarbonised heat supply			
Cost/impact of network activities			
Cost/impact of activities in customer premises			
Need for new regulation			

Urban property – networks

	Network type				
		Gas grid		Electricity	District heating
	Natural gas	Hydrogen		Heat pumps	Large heat
Evaluation criteria		SMR+CCS	Electrolysis		pump
Network investment		0.	2	2	9
cost (£k/home)		U.	3		3
Homes converted per		1 0	$\cap \cap$	400	100
year (thousand)		1,0	00	400	100
Trench size (m)		N/	′Δ	1	3
		147		_	9
Traffic and access					
disruption					

Urban property – consumer + regulation

	Network type				
		Gas grid latural gas Hydrogen		Electricity Heat pumps	District heating Large heat
	Natural gas				
Evaluation criteria		SMR+CCS	Electrolysis		pump
Criticality of energy efficiency					
Appliance costs per household (£k)		0	- 1	5 - 15	0 - 1
Household disruption					
Customer acceptance					
Visual and noise impact					
Regulation issues					

Urban property – heat supply

Hydrogen

100 - 250

Electrolysis

85%

>125

>150

SMR+CCS

85%

>75

>90

Network	(type
Gas grid	Electricity

Natural gas

85%

50

60

30 - 80

Evaluation criteria

Energy supply cost

(£/MWh in 2016)

Heat supply cost

(£/MWh in 2016)

Seasonal storage cost

CCS criticality

(£/MWh)

Heat production

efficiency (%)

Heat pumps

270%

130

50

> 50,000

District heating

Large heat

pump

340%

100

45

80 - 8,000

Conclusions - hydrogen

- ► Feasible thanks to the ongoing programme to install new pipework in the local gas mains
- Could be used in 85% of buildings connected to the gas network
- ▶ Little additional impact on roadworks or in consumer homes
- Relies heavily on the development of new large scale, low cost hydrogen production facilities (potentially CCS)

Conclusions - electrification

- ► Heat pumps, can be suitable for less densely populated environments where disruption and cost can be
 - minimised for electricity system upgrades
 - kept to acceptable levels for building installation work
- Direct electric heating is suited to properties like flats in high rise buildings where
 - gas-fired boilers cannot be used
 - space heating requirements are low

Conclusions – district heating

- Can supply heat efficiently and at low cost
- Well suited to
 - areas of mixed use with strong anchor clients
 - new developments
- Retrofit can be suitable
 - in less densely populated areas,
 - for flats in multi-storey buildings
- Suitable low carbon heat sources needed
- Benefit from regulation

Conclusions - general

- ▶ Each solution has a role to play, but none is a silver bullet
- Big task, more manageable with
 - appropriate energy efficiency investment
 - an early start, good planning and preparation
 - long-term infrastructure investment programmes
- New governance arrangements should be introduced
 - strong city and local authority level involvement
 - skills knowledge and resource will be needed
- Choice and/or the rate of deployment depend on
 - ▶ the non-cost impacts, not just simple economics
 - customer acceptance
- Coordinated pilot developments should be initiated quickly

HEAT DECARBONISATION

SOCIAL EQUITY AND FUEL POVERTY

Analysis of potential impacts

- Order of magnitude and relative significance estimated for:
 - monetary impacts compared to the status quo
 - cost differentials across choice of solution and timing of conversion
 - capital and running costs
 - potential impacts on fuel poverty

Potential impact summary

(if costs recovered through bills rather than tax)

- Additional total annual costs could rise by £200 to £800 per household
- ▶ £4,000 £16,000 difference between first and last converted
- ▶ £0 to £15,000 in up-front capital required
- annual running costs could reduce by £200 or increase by £600
- 15 65% cost increases could create additional 0.6 to 2.6 million fuel poor across UK

Annual additional costs (£) versus consumption (MWh)

Capital versus running costs

Energy efficiencydifferent drivers

- Fuel poverty
 - anything which reduces ongoing costs can reduce fuel poverty
 - ▶ Investment should be in its own right
- Carbon
 - Reduced consumption reduces emissions
- Economics
 - Upper limit on cost effective investment
 - ▶ Balance between reducing demand and decarbonising supply
 - Difference between high capital/low running cost and low capital/high running cost options

Impact of energy efficiency investment

Energy efficiency summary

- Optimum spend on energy efficiency before decarbonising supply is more economic
- Optimum level depends on decarbonisation cost structure
 - ► Higher for high fuel cost solutions
 - ► Lower for high capital cost solutions
- Choice of decarbonisation technology depends on consumption levels
- Hot water energy and capacity needs important for low consumption households

Framework for government interventions

- Enduring support to address externalities
- Short term support to build supply chain, provide learning and consumer experience
- Financing to help with up front costs
- Tackling fuel poverty and distributional issues including those raised by the above:
 - ▶ Helping fuel poor access schemes
 - ▶ Compensating for differential levels of access
 - ► Mitigating impacts of costs of funding support

Scheme design - learning from experience

- Who benefits? Targeting
 - Grants versus loans versus payments
- Who pays? Levies versus taxes
 - Monitoring overall bill impacts
- Obligations versus incentives
- Monopoly network regulation -> district heating (alternative models)
 - Network charging and stranded assets

keith.maclean @provpol.com

