What might district heating zones look like?

David Hawkey

University of Edinburgh

dave.hawkey@ed.ac.uk

Planning district heating

CONSULTATION ON HEAT & ENERGY EFFICIENCY STRATEGIES, AND REGULATION OF DISTRICT HEATING

- LHEES: long range heat planning
 - Beyond near term opportunities
- Scotland-wide consistency
 - Aggregate view across areas

the early history of energy network development in the UK was characterised by fragmentation. [...] we have an important opportunity now to construct a planning and regulatory regime that ensures similar mistakes are avoided with district heating

nment n-Alba

Overview

- Identifying district heating areas
- Characteristics of domestic heat demand in district heating areas
- Relationship with fuel poverty
- Distribution over LA areas

What is the optimal level of district heating?

- Wide range of estimates for both the UK & Scotland
- Scottish policy references
 - 1.5TWh/year 2020 target (~3%)
 - 7% in 2025 (National Comprehensive Assessment)
 - 20% by 2050 (Committee on Climate Change)
- Other estimates are more optimistic
 - 45% in 2025 (NCA de-risk)
 - 70% in 2050 (UK STRATEGO)

Very simple model

- Broad-brush characterisation of DH areas
- Would district heating be lower price to users than competing alternatives?
 - Assume district heating cost dominated by infrastructure costs
 - Assume these scale with heat density
 - Assume competing price is constant across different areas
 - In particular, independent of heat density
- Put data zones in order of infrastructure costs
- Examine distribution as competing cost rises

Aims of district heating regulation

- Move beyond piecemeal/fragmented development
- Avoid 'cherry picking'
- Mitigate risk
- Protect consumers
- Use surplus industrial heat

Zone	Area	Demand	Area/Demand
Α	5.6	6.2	0.9
В	12.1	6.0	2.0
С	11.4	4.1	2.8

Zone	Area	Demand	Area/Demand
А	5.6	6.2	0.9
В	12.1	6.0	2.0
С	11.4	4.1	2.8

Zone	Area	Demand	Area/Demand
А	5.6	6.2	0.9
В	12.1	6.0	2.0
С	11.4	4.1	2.8
A+C	17.0	10.3	1.7

Zone	Area	Demand	Area/Demand
А	5.6	6.2	0.9
В	12.1	6.0	2.0
С	11.4	4.1	2.8
A+C	17.0	10.3	1.7

Cluster density versus zoneinternal density

Cluster density

- Increase supply while ensuring aggregate within cluster beats viability threshold
- Implies cross subsidisation

Internal density

- Maximise surplus by only adding a zone if that zone beats viability threshold
- Simulates 'cherry picking'
- C.f. fragmented pattern of development to date

Cluster density vs zone-internal density

- Cluster model based on cross subsidy
 - Reaches around 50% more heat demand for a given price level

Cluster density vs zone-internal density

Heat demand diversity

- Cluster model based on cross subsidy
 - Reaches around 50% more heat demand for a given price level
 - Connects more households (demand diversity)

Dwelling type

- Cluster model based on cross subsidy
 - Reaches around 50% more heat demand
 - Connects more households (demand diversity)
- At low DH penetrations high proportions of:
 - Flats

Tenure

- Cluster model based on cross subsidy
 - Reaches around 50% more heat demand
 - Connects more households (demand diversity)
- At low DH penetrations high proportions of:
 - Flats
 - Private rent / owner occupier

Current heating

- Cluster model based on cross subsidy
 - Reaches around 50% more heat demand
 - Connects more households (demand diversity)
- At low DH penetrations high proportions of:
 - Flats
 - Private rent / owner occupier
 - Gas central heating

Electrically heated flats

Electrically heated flats

Impact of clustering on electrically heated flats

Impact of clustering on electrically heated flats

- Cluster model based on cross subsidy
 - Reaches around 50% more heat demand
 - Connects more households (demand diversity)
- At low DH penetrations high proportions of:
 - Flats
 - Private rent / owner occupier
 - Gas central heating
- Electric heating in flats is minor
 - Often located close to other heat dense areas

Fuel poverty

Fuel poverty

- Cluster model based on cross subsidy
 - Reaches around 50% more heat demand
 - Connects more households (demand diversity)
- At low DH penetrations high proportions of:
 - Flats
 - Private rent / owner occupier
 - Gas central heating
- Electric heating in flats is minor
 - Often located in proximity to other heat dense areas
- Geographies of fuel poverty and district heating potential do not coincide

LA location of dense heat demand

LA location of dense heat demand – proprtion

- Cluster model based on cross subsidy
 - Reaches around 50% more heat demand
 - Connects more households (demand diversity)
- At low DH penetrations high proportions of:
 - Flats
 - Private rent / owner occupier
 - Gas central heating
- Electric heating in social housing flats is minor
 - Often located in proximity to other heat dense areas
- Geographies of fuel poverty and district heating potential do not coincide
- Wide variation in DH suitability across council areas